Thursday, January 31, 2013

We Shape Our Tools And Then Our Tools Shape Us

Or so said (maybe) Marshall McLuhan, a philosopher and communication theorist best known for the phrase "The medium is the message." And because our tools shape us, it pays to have the best tools you can afford. When you say "tools" to a software developer, the first thing that pops into their head are software development tools like Eclipse, an interactive development environment with a graphical user interface. And for sure, I use Eclipse on an almost daily basis. But for the kind of work I do, down close to bare metal, this can also mean artifacts ranging from hand tools like wrenches and screwdrivers to high-technology tools like logic analyzers and digital storage oscilloscopes.

I have three tool kits that I put together over the past few years that have served me well. I didn't just go out to the hardware store and buy a bunch of tools that I thought might be useful. I carefully collected the tools I found indispensable and organized them into cases and bags that I could cart around in the trunk of my car from client to client as the need arose. I learned to do this from working closely with really excellent field support engineers who had to wrench and troubleshoot some of the products that I produced during my long career.

Field-Service Tool Kit

This is a big professional field-service bag about the size of a small suitcase. It is shown with my iPhone for comparison. It is stuffed with twenty-four pounds of hand tools. That may not sound like that much until you cart them up several flights of stairs.

IMG_1557

The field-service tool kit has two enormous zip-open compartments. The first one looks about like what you would expect: wire cutters and strippers, pliers, wrenches, screwdrivers, EMT scissors and other sharp objects capable of various degrees of mayhem, as well as more esoteric stuff like ESD-safe tweezers, a barb-wire-fence tool (invaluable), some pipecleaners, and a toothbrush. If you buy quality hand tools for your own use, you will recognize a lot of this stuff.

IMG_1558

The other side of the bag contains a variety of specialized equipment like my Radio Shack digital multimeter and a variety of probes for it, a big zip-lock bag of neon-colored nylon ties, and electrical and duct tape.

IMG_1559

Not shown are the outside velcro-closing pockets with safety glasses, flashlights, spools of wire of various gauges, and a big zip-lock bag of miscellaneous crimp-on connectors.

Console and Signals Tool Kit

This is a laptop bag, with my iPhone for comparison, stuffed with the things I need to instrument a microprocessor or microcontroller to see what the heck my software or firmware, or my client's hardware, is doing.

IMG_1563

The console and signals tool kit includes a Velleman PCSU1000 PC-based digital storage oscilloscope (left), a Saleae Logic-16 PC-based logic analyzer (right), a powered USB 2.0 hub (bottom), and an old IBM ThinkPad (center). The laptop runs Windows 7 and is loaded with the Velleman and Saleae software, as well as packages like WireShark, the Ethernet protocol analyzer formerly known as Ethereal, and PuTTY, my favorite Windows-based terminal emulator. The tool kit also includes a wide selection of USB adaptors for RS232 and logic-level serial ports and other serial busses, as well as a bunch of USB, Ethernet, and serial cables.

IMG_1569

All of this, and more, gets packed into the laptop bag so that a short trip to my car can get me started quickly figuring out what's going on.

IMG_1568

The console and signals tool kit is the one I use the most often.

Soldering Station Tool Kit

Occasionally I have to do more violence, in the form of hardware mods or repairs, than you might expect for someone whose degrees are all in Computer Science. That's when this backpack moves into the trunk of the car.

IMG_1564

It contains a complete Weller digitally-controlled soldering station and all the paraphernalia that goes with it. Plus: safety glasses with magnifying lenses, alligator-clip "helping hands" with a magnifying glass, a folding super-bright LED task light (you may be detecting a pattern here), and even a Weller ESD-safe heat gun and a collection of shrink wrap tubing.

IMG_1566

All of this, plus a flux pen and other useful stuff, fit comfortably in the backpack, the soldering station and heat gun inside their original boxes.

IMG_1567

I've used this tool kit to do quite professional-looking (considering the practitioner) work, building special adapters and cables and test fixtures and what-not. And sometimes, not so professional work like scraping surface mount resistors off a board and replacing them with conventional resistors to which I could attach a logic analyzer.

I have had clients that knew that they needed an embedded developer, but had no real clue what an embedded developer did or what tools he needed to fulfill his role in their product development organization. These tool kits allow me to become a self-sufficient one-man traveling R&D laboratory. When they hire me, they're getting a bunch of necessary infrastructure too. I've already figured out what I need, so they don't have to.

Update (2013-02-09)

Network Tool Kit

While having breakfast when three friends this morning, conversation inevitably turned towards using Wireshark to debug TLS packet streams. Well, maybe not inevitably, but that's the kind of friends I have. I realized then that I forgot about my network tool kit.

Network Tool Kit Closed

This bag contains four smaller bags or sub-kits. The sub-kits contain (clockwise from top left) a LinkSys WRT54GL wireless broadband router (this is the Linux-based model), an inexpensive Dynex IP router, a Netgear FS108 fast Ethernet switch, and a Netgear EN104 Ethernet hub. Plus, all the necessary AC adapters and cables to deploy them.

Network Tool Kit Subkits

I've used the LinkSys access point to debug and test WiFi chips in embedded systems. The Dynex router is useful to set up a temporary IP subnet in a laboratory and isolate weirdness from the client network. The Netgear switch is handy for expanding the single Ethernet cable the client gives me into a usable eight-port network. And if you've ever done Wireshark debugging, you know that as obsolete as it may be, the Ethernet hub is invaluable for peeking at a network packet stream between devices.

Network Tool Kit Components

All four sub-kits, plus an array of Ethernet patch cables, fits in this small bag.

Network Tool Kit Open

I don't use my network kit that often, but when I need it, I really need it.

Update (2013-12-24)

Air Travel

I was recently called upon to do some cross country travel on behalf of one of my clients to do some product integration testing with one of their big customers. I used this as an excuse to try out my recently upgraded field support capability. Considering past clients have shipped me off to Europe and Asia, I'd like to think my business card could say: "Have Laptop - Will Travel".

I replaced my laptop bag with a Pelican U100 Elite backpack.  If the U.S. Navy Seals had to do field support, this is what they would use. The U100 has a built-in Pelican case for my field service laptop. The case has the usual dust and moisture seals and pressure equalization valve that has made Pelican the standard by which all other such field cases are measured.

Pelican U100 Laptop Backpack

Some time ago I replaced my ancient IBM ThinkPad mentioned earlier in this article with a Lenovo ThinkPad T430s laptop. This is Lenovo's standard rugged business ThinkPad equipped with a solid state disk (SSD). I find eliminating moving parts as much as possible makes it more likely my equipment will arrive at its destination fully functional. Since the U100 backpack with the T430s resides in the trunk of my all-wheel-drive Subaru,  I worry about it a lot less. The U100 carries not only the T430s, but also my Saleae Logic PC-based logic analyzer, my Velleman PCSU1000 PC-based oscilloscope, a small multimeter, USB adapters, cables, connectors, and other tools of the trade.

Pelican U100 Laptop Backpack (Open)

The U100 is small enough to carry-on, but some of the tools I carry in it are not TSA-friendly. When I have to travel with it as checked baggage, I stow it in a North Face Base Camp duffel bag. The mouth of the North Face duffel is big enough to swallow the U100 backpack whole.

North Face Base Camp Duffel Bag (Open)

I've sat on flights that have just landed, waiting my turn to deplane, and watched my luggage sit on the tarmac in the pouring rain. The water resistant North Face duffel not only protects my equipment from the elements, but keeps the straps of the U100 out of the workings of hungry automated baggage systems. Although the duffel comes with detachable shoulder straps, I find that the built-in handles are completely adequate to temporarily turn the duffel into a backpack while shlepping it through airports.

North Face Base Camp Duffel Bag (Closed)

When I have to travel with additional equipment, I once again turn to Pelican. The relatively small Pelican 1510 case meets the carry-on requirements of most airlines and is designed like carry-on rolling luggage.

Pelican 1510 Carry-On Rolling Bag (Closed)

It doesn't hold as much as you might think, thanks to all the internal padding and the thick plastic shell. But the padding and shell are exactly why I bought the case in the first place. It was sufficient on my recent trip to carry an engineering prototype of a satellite communications product, a power supply, a tangle of cables, and a quarter-terabyte USB 3.0 drive (!!!).

Pelican 1510 Carry-On Rolling Bag (Open)

When I reach my destination, I extend the handle of the 1510, set it up on its built-in wheels, stack my other paraphernalia on top of it, and I'm good to go.

Pelican 1510 Carry-On Rolling Bag

When I am traveling on the business of high technology, it doesn't pay to scrimp. My mission may be critical enough that there really is no Plan B. And when I am dealing with my clients, or even more importantly the clients of my clients, I want to project an image of competence, quality, and professionalism. I want to keep my current business; and I never know from where my future business is going to come.

Wednesday, January 09, 2013

Hidden Variables: Arduino Due and the Cortex-M3

Once again, I'm curious about what preprocessor symbols are predefined by the GNU C compiler. This time it's for the ARM Cortex-M3 core in the Atmel SAM3X8E chip on my Arduino Due. Here is what the command

arm-none-eabi-g++ -dM -E -mcpu=cortex-m3 -mthumb - < /dev/null

for GCC 4.7.2 from the CodeSourcery CodeBench Lite 2012.09-63 toolchain yields.

#define __DBL_MIN_EXP__ (-1021)
#define __HQ_FBIT__ 15
#define __UINT_LEAST16_MAX__ 65535
#define __ATOMIC_ACQUIRE 2
#define __SFRACT_IBIT__ 0
#define __FLT_MIN__ 1.1754943508222875e-38F
#define __UFRACT_MAX__ 0XFFFFP-16UR
#define __UINT_LEAST8_TYPE__ unsigned char
#define __DQ_FBIT__ 63
#define __INTMAX_C(c) c ## LL
#define __CS_SOURCERYGXX_REV__ 63
#define __ULFRACT_FBIT__ 32
#define __SACCUM_EPSILON__ 0x1P-7HK
#define __CHAR_BIT__ 8
#define __USQ_IBIT__ 0
#define __UINT8_MAX__ 255
#define __ACCUM_FBIT__ 15
#define __WINT_MAX__ 4294967295U
#define __USFRACT_FBIT__ 8
#define __ORDER_LITTLE_ENDIAN__ 1234
#define __SIZE_MAX__ 4294967295U
#define __WCHAR_MAX__ 4294967295U
#define __LACCUM_IBIT__ 32
#define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1 1
#define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2 1
#define __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 1
#define __DBL_DENORM_MIN__ ((double)4.9406564584124654e-324L)
#define __GCC_ATOMIC_CHAR_LOCK_FREE 2
#define __FLT_EVAL_METHOD__ 0
#define __LLACCUM_MAX__ 0X7FFFFFFFFFFFFFFFP-31LLK
#define __GCC_ATOMIC_CHAR32_T_LOCK_FREE 2
#define __FRACT_FBIT__ 15
#define __UINT_FAST64_MAX__ 18446744073709551615ULL
#define __SIG_ATOMIC_TYPE__ int
#define __UACCUM_FBIT__ 16
#define __DBL_MIN_10_EXP__ (-307)
#define __FINITE_MATH_ONLY__ 0
#define __ARMEL__ 1
#define __ARM_FEATURE_UNALIGNED 1
#define __ARM_ARCH_7M__ 1
#define __LFRACT_IBIT__ 0
#define __GNUC_PATCHLEVEL__ 2
#define __LFRACT_MAX__ 0X7FFFFFFFP-31LR
#define __UINT_FAST8_MAX__ 4294967295U
#define __DEC64_MAX_EXP__ 385
#define __INT8_C(c) c
#define __UINT_LEAST64_MAX__ 18446744073709551615ULL
#define __SA_FBIT__ 15
#define __SHRT_MAX__ 32767
#define __LDBL_MAX__ 1.7976931348623157e+308L
#define __FRACT_MAX__ 0X7FFFP-15R
#define __thumb2__ 1
#define __UFRACT_FBIT__ 16
#define __UFRACT_MIN__ 0.0UR
#define __UINT_LEAST8_MAX__ 255
#define __GCC_ATOMIC_BOOL_LOCK_FREE 2
#define __UINTMAX_TYPE__ long long unsigned int
#define __LLFRACT_EPSILON__ 0x1P-63LLR
#define __DEC32_EPSILON__ 1E-6DF
#define __CHAR_UNSIGNED__ 1
#define __UINT32_MAX__ 4294967295UL
#define __ULFRACT_MAX__ 0XFFFFFFFFP-32ULR
#define __TA_IBIT__ 64
#define __LDBL_MAX_EXP__ 1024
#define __WINT_MIN__ 0U
#define __ULLFRACT_MIN__ 0.0ULLR
#define __SCHAR_MAX__ 127
#define __WCHAR_MIN__ 0U
#define __INT64_C(c) c ## LL
#define __DBL_DIG__ 15
#define __GCC_ATOMIC_POINTER_LOCK_FREE 2
#define __LLACCUM_MIN__ (-0X1P31LLK-0X1P31LLK)
#define __SIZEOF_INT__ 4
#define __SIZEOF_POINTER__ 4
#define __USACCUM_IBIT__ 8
#define __USER_LABEL_PREFIX__ 
#define __STDC_HOSTED__ 1
#define __LDBL_HAS_INFINITY__ 1
#define __LFRACT_MIN__ (-0.5LR-0.5LR)
#define __HA_IBIT__ 8
#define __TQ_IBIT__ 0
#define __FLT_EPSILON__ 1.1920928955078125e-7F
#define __APCS_32__ 1
#define __USFRACT_IBIT__ 0
#define __LDBL_MIN__ 2.2250738585072014e-308L
#define __FRACT_MIN__ (-0.5R-0.5R)
#define __DEC32_MAX__ 9.999999E96DF
#define __DA_IBIT__ 32
#define __INT32_MAX__ 2147483647L
#define __UQQ_FBIT__ 8
#define __SIZEOF_LONG__ 4
#define __UACCUM_MAX__ 0XFFFFFFFFP-16UK
#define __UINT16_C(c) c
#define __DECIMAL_DIG__ 17
#define __LFRACT_EPSILON__ 0x1P-31LR
#define __ULFRACT_MIN__ 0.0ULR
#define __LDBL_HAS_QUIET_NAN__ 1
#define __ULACCUM_IBIT__ 32
#define __UACCUM_EPSILON__ 0x1P-16UK
#define __GNUC__ 4
#define __ULLACCUM_MAX__ 0XFFFFFFFFFFFFFFFFP-32ULLK
#define __HQ_IBIT__ 0
#define __FLT_HAS_DENORM__ 1
#define __SIZEOF_LONG_DOUBLE__ 8
#define __BIGGEST_ALIGNMENT__ 8
#define __DQ_IBIT__ 0
#define __DBL_MAX__ ((double)1.7976931348623157e+308L)
#define __ULFRACT_IBIT__ 0
#define __INT_FAST32_MAX__ 2147483647
#define __DBL_HAS_INFINITY__ 1
#define __ACCUM_IBIT__ 16
#define __DEC32_MIN_EXP__ (-94)
#define __THUMB_INTERWORK__ 1
#define __LACCUM_MAX__ 0X7FFFFFFFFFFFFFFFP-31LK
#define __INT_FAST16_TYPE__ int
#define __LDBL_HAS_DENORM__ 1
#define __DEC128_MAX__ 9.999999999999999999999999999999999E6144DL
#define __INT_LEAST32_MAX__ 2147483647L
#define __ARM_PCS 1
#define __DEC32_MIN__ 1E-95DF
#define __ACCUM_MAX__ 0X7FFFFFFFP-15K
#define __DBL_MAX_EXP__ 1024
#define __USACCUM_EPSILON__ 0x1P-8UHK
#define __DEC128_EPSILON__ 1E-33DL
#define __SFRACT_MAX__ 0X7FP-7HR
#define __FRACT_IBIT__ 0
#define __PTRDIFF_MAX__ 2147483647
#define __UACCUM_MIN__ 0.0UK
#define __UACCUM_IBIT__ 16
#define __LONG_LONG_MAX__ 9223372036854775807LL
#define __SIZEOF_SIZE_T__ 4
#define __ULACCUM_MAX__ 0XFFFFFFFFFFFFFFFFP-32ULK
#define __SIZEOF_WINT_T__ 4
#define __SA_IBIT__ 16
#define __ULLACCUM_MIN__ 0.0ULLK
#define __GXX_ABI_VERSION 1002
#define __UTA_FBIT__ 64
#define __SOFTFP__ 1
#define __FLT_MIN_EXP__ (-125)
#define __USFRACT_MAX__ 0XFFP-8UHR
#define __UFRACT_IBIT__ 0
#define __INT_FAST64_TYPE__ long long int
#define __DBL_MIN__ ((double)2.2250738585072014e-308L)
#define __LACCUM_MIN__ (-0X1P31LK-0X1P31LK)
#define __ULLACCUM_FBIT__ 32
#define __GXX_TYPEINFO_EQUALITY_INLINE 0
#define __ULLFRACT_EPSILON__ 0x1P-64ULLR
#define __USES_INITFINI__ 1
#define __DEC128_MIN__ 1E-6143DL
#define __REGISTER_PREFIX__ 
#define __UINT16_MAX__ 65535
#define __DBL_HAS_DENORM__ 1
#define __ACCUM_MIN__ (-0X1P15K-0X1P15K)
#define __SQ_IBIT__ 0
#define __UINT8_TYPE__ unsigned char
#define __UHA_FBIT__ 8
#define __NO_INLINE__ 1
#define __SFRACT_MIN__ (-0.5HR-0.5HR)
#define __UTQ_FBIT__ 128
#define __FLT_MANT_DIG__ 24
#define __VERSION__ "4.7.2"
#define __UINT64_C(c) c ## ULL
#define __ULLFRACT_FBIT__ 64
#define __FRACT_EPSILON__ 0x1P-15R
#define __ULACCUM_MIN__ 0.0ULK
#define __UDA_FBIT__ 32
#define __LLACCUM_EPSILON__ 0x1P-31LLK
#define __GCC_ATOMIC_INT_LOCK_FREE 2
#define __FLOAT_WORD_ORDER__ __ORDER_LITTLE_ENDIAN__
#define __USFRACT_MIN__ 0.0UHR
#define __UQQ_IBIT__ 0
#define __INT32_C(c) c ## L
#define __DEC64_EPSILON__ 1E-15DD
#define __ORDER_PDP_ENDIAN__ 3412
#define __DEC128_MIN_EXP__ (-6142)
#define __UHQ_FBIT__ 16
#define __LLACCUM_FBIT__ 31
#define __INT_FAST32_TYPE__ int
#define __UINT_LEAST16_TYPE__ short unsigned int
#define __INT16_MAX__ 32767
#define __SIZE_TYPE__ unsigned int
#define __UINT64_MAX__ 18446744073709551615ULL
#define __UDQ_FBIT__ 64
#define __INT8_TYPE__ signed char
#define __thumb__ 1
#define __ELF__ 1
#define __ULFRACT_EPSILON__ 0x1P-32ULR
#define __LLFRACT_FBIT__ 63
#define __FLT_RADIX__ 2
#define __INT_LEAST16_TYPE__ short int
#define __LDBL_EPSILON__ 2.2204460492503131e-16L
#define __UINTMAX_C(c) c ## ULL
#define __SACCUM_MAX__ 0X7FFFP-7HK
#define __SIG_ATOMIC_MAX__ 2147483647
#define __GCC_ATOMIC_WCHAR_T_LOCK_FREE 2
#define __VFP_FP__ 1
#define __SIZEOF_PTRDIFF_T__ 4
#define __CS_SOURCERYGXX_MIN__ 9
#define __LACCUM_EPSILON__ 0x1P-31LK
#define __DEC32_SUBNORMAL_MIN__ 0.000001E-95DF
#define __INT_FAST16_MAX__ 2147483647
#define __UINT_FAST32_MAX__ 4294967295U
#define __UINT_LEAST64_TYPE__ long long unsigned int
#define __USACCUM_MAX__ 0XFFFFP-8UHK
#define __SFRACT_EPSILON__ 0x1P-7HR
#define __FLT_HAS_QUIET_NAN__ 1
#define __FLT_MAX_10_EXP__ 38
#define __LONG_MAX__ 2147483647L
#define __DEC128_SUBNORMAL_MIN__ 0.000000000000000000000000000000001E-6143DL
#define __FLT_HAS_INFINITY__ 1
#define __USA_FBIT__ 16
#define __UINT_FAST16_TYPE__ unsigned int
#define __DEC64_MAX__ 9.999999999999999E384DD
#define __CHAR16_TYPE__ short unsigned int
#define __PRAGMA_REDEFINE_EXTNAME 1
#define __CS_SOURCERYGXX_MAJ__ 2012
#define __INT_LEAST16_MAX__ 32767
#define __DEC64_MANT_DIG__ 16
#define __INT64_MAX__ 9223372036854775807LL
#define __UINT_LEAST32_MAX__ 4294967295UL
#define __SACCUM_FBIT__ 7
#define __GCC_ATOMIC_LONG_LOCK_FREE 2
#define __INT_LEAST64_TYPE__ long long int
#define __INT16_TYPE__ short int
#define __INT_LEAST8_TYPE__ signed char
#define __SQ_FBIT__ 31
#define __DEC32_MAX_EXP__ 97
#define __INT_FAST8_MAX__ 2147483647
#define __INTPTR_MAX__ 2147483647
#define __QQ_FBIT__ 7
#define __UTA_IBIT__ 64
#define __LDBL_MANT_DIG__ 53
#define __SFRACT_FBIT__ 7
#define __SACCUM_MIN__ (-0X1P7HK-0X1P7HK)
#define __DBL_HAS_QUIET_NAN__ 1
#define __SIG_ATOMIC_MIN__ (-__SIG_ATOMIC_MAX__ - 1)
#define __INTPTR_TYPE__ int
#define __UINT16_TYPE__ short unsigned int
#define __WCHAR_TYPE__ unsigned int
#define __SIZEOF_FLOAT__ 4
#define __THUMBEL__ 1
#define __USQ_FBIT__ 32
#define __UINTPTR_MAX__ 4294967295U
#define __DEC64_MIN_EXP__ (-382)
#define __ULLACCUM_IBIT__ 32
#define __INT_FAST64_MAX__ 9223372036854775807LL
#define __GCC_ATOMIC_TEST_AND_SET_TRUEVAL 1
#define __FLT_DIG__ 6
#define __UINT_FAST64_TYPE__ long long unsigned int
#define __INT_MAX__ 2147483647
#define __LACCUM_FBIT__ 31
#define __USACCUM_MIN__ 0.0UHK
#define __UHA_IBIT__ 8
#define __INT64_TYPE__ long long int
#define __FLT_MAX_EXP__ 128
#define __UTQ_IBIT__ 0
#define __DBL_MANT_DIG__ 53
#define __INT_LEAST64_MAX__ 9223372036854775807LL
#define __GCC_ATOMIC_CHAR16_T_LOCK_FREE 2
#define __DEC64_MIN__ 1E-383DD
#define __WINT_TYPE__ unsigned int
#define __UINT_LEAST32_TYPE__ long unsigned int
#define __SIZEOF_SHORT__ 2
#define __ULLFRACT_IBIT__ 0
#define __LDBL_MIN_EXP__ (-1021)
#define __arm__ 1
#define __UDA_IBIT__ 32
#define __INT_LEAST8_MAX__ 127
#define __LFRACT_FBIT__ 31
#define __LDBL_MAX_10_EXP__ 308
#define __ATOMIC_RELAXED 0
#define __DBL_EPSILON__ ((double)2.2204460492503131e-16L)
#define __UINT8_C(c) c
#define __INT_LEAST32_TYPE__ long int
#define __SIZEOF_WCHAR_T__ 4
#define __UINT64_TYPE__ long long unsigned int
#define __LLFRACT_MAX__ 0X7FFFFFFFFFFFFFFFP-63LLR
#define __TQ_FBIT__ 127
#define __INT_FAST8_TYPE__ int
#define __ULLACCUM_EPSILON__ 0x1P-32ULLK
#define __UHQ_IBIT__ 0
#define __LLACCUM_IBIT__ 32
#define __DBL_DECIMAL_DIG__ 17
#define __DEC_EVAL_METHOD__ 2
#define __TA_FBIT__ 63
#define __UDQ_IBIT__ 0
#define __ORDER_BIG_ENDIAN__ 4321
#define __ACCUM_EPSILON__ 0x1P-15K
#define __UINT32_C(c) c ## UL
#define __INTMAX_MAX__ 9223372036854775807LL
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
#define __FLT_DENORM_MIN__ 1.4012984643248171e-45F
#define __LLFRACT_IBIT__ 0
#define __INT8_MAX__ 127
#define __UINT_FAST32_TYPE__ unsigned int
#define __CHAR32_TYPE__ long unsigned int
#define __FLT_MAX__ 3.4028234663852886e+38F
#define __USACCUM_FBIT__ 8
#define __INT32_TYPE__ long int
#define __SIZEOF_DOUBLE__ 8
#define __FLT_MIN_10_EXP__ (-37)
#define __UFRACT_EPSILON__ 0x1P-16UR
#define __INTMAX_TYPE__ long long int
#define __DEC128_MAX_EXP__ 6145
#define __ATOMIC_CONSUME 1
#define __GNUC_MINOR__ 7
#define __UINTMAX_MAX__ 18446744073709551615ULL
#define __DEC32_MANT_DIG__ 7
#define __HA_FBIT__ 7
#define __DBL_MAX_10_EXP__ 308
#define __LDBL_DENORM_MIN__ 4.9406564584124654e-324L
#define __INT16_C(c) c
#define __STDC__ 1
#define __PTRDIFF_TYPE__ int
#define __LLFRACT_MIN__ (-0.5LLR-0.5LLR)
#define __ATOMIC_SEQ_CST 5
#define __DA_FBIT__ 31
#define __UINT32_TYPE__ long unsigned int
#define __ARM_ARCH_EXT_IDIV__ 1
#define __UINTPTR_TYPE__ unsigned int
#define __USA_IBIT__ 16
#define __DEC64_SUBNORMAL_MIN__ 0.000000000000001E-383DD
#define __ARM_EABI__ 1
#define __DEC128_MANT_DIG__ 34
#define __LDBL_MIN_10_EXP__ (-307)
#define __SIZEOF_LONG_LONG__ 8
#define __ULACCUM_EPSILON__ 0x1P-32ULK
#define __SACCUM_IBIT__ 8
#define __GCC_ATOMIC_LLONG_LOCK_FREE 1
#define __LDBL_DIG__ 15
#define __FLT_DECIMAL_DIG__ 9
#define __UINT_FAST16_MAX__ 4294967295U
#define __GNUC_GNU_INLINE__ 1
#define __GCC_ATOMIC_SHORT_LOCK_FREE 2
#define __ULLFRACT_MAX__ 0XFFFFFFFFFFFFFFFFP-64ULLR
#define __UINT_FAST8_TYPE__ unsigned int
#define __USFRACT_EPSILON__ 0x1P-8UHR
#define __ULACCUM_FBIT__ 32
#define __QQ_IBIT__ 0
#define __ATOMIC_ACQ_REL 4
#define __ATOMIC_RELEASE 3

I find this kind of stuff fascinating. And necessary, for the kind of work that I do down close to bare metal where the underlying details are often important. But I'm careful about writing code that depends on these symbols unless it's really necessary. For example, I much prefer to use sizeof(size_t) instead of __SIZEOF_SIZE_T__ if possible (sometimes it isn't).

It's been interesting having spent the past several years developing low level code for embedded systems whose processors range from powerful ARM microprocessors like the Cortex-A8 -- a 32-bit von Neumann architecture with a memory management unit and on which I run Linux -- to Atmel AVR and Microchip PIC16 microcontrollers -- 8-bit Harvard architectures sometimes with as little as ninety-six bytes of RAM on which I may run just a task loop -- to see the ARM Cortex-M3 which straddles both worlds -- a 32-bit ARM core yet with separate program and data memories.

My friends who are Java developers may safely go back to downloading an additional terabyte of framework to add yet another layer of abstraction to whatever they're trying to accomplish.